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can be performed with respect to its elements. We then have to satisfy the condition that B
must be positive definite. A more sensible method is to use our above method of constructing
the extremal sets of stability and write a problem of type (4.4) /3/.

To solve problem (4.4) we used iterative algorithms of type (3.5), taking the case when
the maxima with respect to ¢, z), o are not unique. When solving this class of problems we
found a high rate of convergence of the iterative processes to the point o, The modes
obtained were mainly analysed for optimality from the physical stand-point. It must be said
that the optimal design of acceleration and focussing systems by our method enables the ef-
ficiency of such devices to be greatly improved /3/.

The author thanks V.V. Rumyantsev, B.N. Bublik, and N.F. Karichenko for useful discussions
and comments.
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ON A REMARK OF POINCARE"

L.M. MARKHASHOV

Descriptions of non—autonoybus mechanical systems by Poincaré's equations

/1/ in the Lagrangian and canonical forms are studied. For systems with

a Hamiltonian which depends only on the Chetayev variables /2/ and time,

the existence of a complete set of linear (non-commuting) first integrals

is proved. The required conditions imposed on the kinetic energy and

active-forces are studied. Explicit relations for evaluating the integrals

by quadratures are obtained. The connection of Poincare's equations with

system of hydrodynamic type is noted. The case of the motion of autonomous

mechanical systems when the Lagrange function, expressed in velocity

parameters, is independent of the coordinates, was mentioned by Poincare

as being of special interest. This case includes the theory of geodesic

left—invariant metrics in Lie groups (a "generalized rigid body" /3/).

The primary element of its construction is a Lie group (configuration

manifold). Every metric which is defined in it and is invariant under

the group operations, defines the kinetic energy. In studies not directly

corinected with Poincare's remark, the initial object is the mechanical
*prikl .Matem.Mekhan.,51,5,724~734,1987
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system (the kinetic energy and active forces). Therein lies the difference
between the statements of the problems and the results obtained.

1. Initial relations. 1Ilet us summarize the facts used below, which we stated and
proved in our paper "Some properties and applications of the Poincare~Chetayev equations*.
(*Preprint 273, Inst. Problem Mechaniki, Akad. Nauk SSSR, Moscow, 1968). Throughout, the
indices take the values

Li.Lkp=1,...,n a,p=1,...,N; v=1,...,N —s

Summation over repeated indices is understood.

Let z, be the coordinates of the mechanical system with s degrees of freedom, constrained
by N —s ideal holonomic non-stationary couplings fv(z,t) = 0, the explicit form of which
is not necessarily known. We assume that the possible displacements and actual velocities of
the system can be written as

0xg = gaj (z, 1) 911 To = gaj (z, t) n; + Ex(z,t); N,n -
s = rank || &’ |

where the parameters Q; of the possible displacements and the Poincare parameters 7y, are
independent. It is assumed that the corresponding operators

X, = 0/0t + By (2, t) 302, X; = B (2, 8) 0/0xa
of which just §-+ 1 are linearly independent, form a basis of the (u 4+ 1)-dimensional Lie
algebra (algebra A)
X Xil=ctXp  [X Xol= cko X

Let L (¢, z,2) be the Lagrange function of the system and L* ({, z,n)= L (, , By 4+ B o
tn'n; + En); Qa be the non-conservative forces acting on the system. The equations of motion

d [ aL* , j ’ [
W(W)=Xj L* + 8Qa) X/ =X;+ (c5; + Cﬁ'f]z)a_np (.1
2o = & (2, 1) n; + &a (2, 2) 1.2)

contain N — s redundant coordinates z and n-—s redundant parameters 1. With N=r =3y,
co =0, Qu = 0, 3%/0t =0, &, = 0 they become Poincare's equations. With N >>s, n=s, ¢f =
0, Q, = 0 they become the Poincaré-Chetayev equations for the case of non-stationary couplings
We note some properties of Egs.(l.l).
1©, of the n equations (l1.1), only s are independent. The rest are linear combinations

of the independent equations. Hence, if the latter correspond to the parameters M, ..., 7,
then the parameters 1M, ..., %, are free, i.e., they are not connected by any auxiliary
conditions. :

2°, The operators X,; form a basis of an algebra isomorphic to algebra 4: Xy, X}'1=
c;kpo'.

3°, We can obtain Egs.(l.l) from the known Lagrange equations by a passage to the quasi-
velocities in accordance with (1.2).

We pass in Egs.(1.1l) and (1.2) with n =3s to Chetayev variables y; = dL*¥/dn;. In
mechanical problems the Lagrange function L* is non-degenerate quadratic form of the variables
M, - - -7, By the property of the Legendre transformation (Donkin's theorem /4/) there is an
inverse transformation v; = dH*/dy;, generated by the function H* == 7,y; — L*. The equations
of motion take the canonical form

: *
tw =k Gt b (1)
. . H* :
Yy =— (Ea’%%'— + ¢;Fup ‘39,,[ ) + ¢ Yp + £a'Cu

Chetayev (/2/, p.199) was the first to obtain Egs.(1.3) in the redundant coordinates with
non-stationary couplings under the assumption that there are no non-conservative forces

(O« = 0) and that the operator X,permutes with the operators X, ..., X, (cof = 0). If n=3s
and X, =0; Egs.(l.1) can be obtained directly from Hamilton's equations
z" = 6H/dp;, pi = —0H/0z, + Q4

by replacing the momenta y, = E,*p;.
We can write Eqs. (1.3) in the form
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2o =Y *H* + . ¥ = — XH*H* + Py, 4 E’Qa (1.4)

i [ 3 a a
Yor=L' @5 X*="(1 32, 'Yy oy,
i

By the operator of shift along the trajectories of motion of the system z;" = f; (2;, ?)
we henceforth mean the operator of total time differentiation in the light of the equations
of motion of functions which are given in the space {z,t}, S = 9/0t - f; (2, t) d/as,,
acting on functions which are defined in the phase space {2}, S = f; (3) 9/0z,.

We consider a mechanical system with ideal holonomic non-stationary couplings, whose
motion is described by Egs.(l.4). The shift operator of this system is

or the operator

3 a ;
§= g atH? + %) o+ (= XPHY + oty + Ea'Qa) gy

We will list some of its properties.
1°. The operator S can be written as

oH* aH*
* * — X
§=Xo* — o Ya* + - X,

3 a
Xo¥ =X, + (cojp.’/p + £27Qq) T
;i

Thus § belongs to the linear hull stretched on operators X,*, Y *, X;*.

2°. The system of operators X,* Y,*, X,* is closed. When there are no non-conservative
forces (Q, = 0) its multiplication table is given by the commutation relations

[X,* Xi*) = chX,*  [Yo* Y*¥]=0 (1.6)

o J i #E,
(X% Xatl = 2= Yo (X% o= Yyt
[Xo* Xi*]= e X p*

3°, I1f the forces Qx5 0 and are independent of the variables y, the last set of
relations in Para.5 will be replaced by

/ k

aaﬂz ’
[Xo*, Xy*] = cBeX,* — (Xkof,' + 7 0a ) Ye* (.7
Qs = Qp — 0 (bo + U) 0y,

where (bo+ U) are the terms of H¥*, independent of y.

4°. The left-hand sides of the coupling equations belong to the kernel K of the operators
Xo'y Ya‘v Xj*' i‘e'l

Xo*fv: Ya*fv: Xj*fv: 0

5C. Let g4y .- -+ &5 be the coordinates of the conservative system such that we have
OH*0z6,y = ... = 0H*/0x, =0, 0%/0x6s; = ...
... = 0k/0z, =0
0t 0264y = ... = 010z, =0, y=1,...,¢

The rank of the matrix || &;*|l, from which the block

§tl7+l A §;+1
gsl A E!'
is removed, is equal te ¢,and
BB
rankff. .- =g
§01 ... gd’

Then, in accordance with (1.5) and (1.6),

the kernel K consists of functions fy and of a
further s — o functions oy,
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Yy*o, = X*o, = X %o, =0; y=1,..,0 j=1,...,5 (1.8)
p,._——_l, cey S—CO

These are the functionally independent first integrals of the mechanical system. If,
in the Lagrangian form, the latter has the cyclic coordinates. Zgu, .. -, Zo+m (m < s — o), which,

on passage to the canonical form, are included in the Chetayev coordinates z4.y,..., 2, then
all the corresponding cyclic integrals are contained among the functions o,.

Notes. 1°. Here and henceforth, by a first integral of motion e,, we shall mean a
solution of the equation So = 0. The uniqueness of this solution and the degree to which this
definition corresponds to modern geometrical ideas on first integrals will not be discussed.

2°. fThe condition on the rank of the matrix [&| is satisfied automatically and in
an obvious way in two cases: with W =5 and when =,,...,2z; are the Lagrangian coordinates,
and g4, - - . 2y are parametrized by the remaining s — ¢ Lagrangian coordinates of the system.

A special case, noted by Poincare, corresponds to the following situation which is
further considered in Paras.2-4. The mechanical system with ideal holonomic non-stationary
couplings and with s degrees of freedom, moves in the absence of active forces (U =0, Qo =
0). We will assume that, by introducing a suitable algebra, we can remove all the coordinates
from the function H*: H* = H* (f, y). Then the shift operator S is an element of the linear hull,
stretched over the basis system of operators X,*,X,* ..., X,* of the (s+ 1) ~dimensional
Lie algebra

S':Xo*‘i"_a;;‘ Xj*y [Xj*1Xk*]=c]PkXp*7 [Xo*, Xk*]:c()kap*
j

This follows from (1.5) and (1.6). Putting

H* = Ybyy (0) yiys + bi () s + bo (1) (1.9)
in Egs.(1.4) we obtain with N =35

Zq" = §aibij!/j + E'b; + Ea {1.10)
¥ =cifbuypyi + (€0 + eifb) Up

2. On the existence and evaluation of the first integrals. By (1.8), the
system of equations

Xrto=Xrto=...=X*a=0 (2.1)

is compatible and its solutions are the first integrals of the equations of motion (1.10).
The closed system of operators X.*, X,* ..., X,* acts in (2s -+ 1) -dimensional space {t, z, iy},
and hence has precisely 2s+ 1 — (s-+ 1) =s independent solutions. Let us show that they
are all linear in the variables yj;- The integrals that depend only on y; are non-linear.

For s =3 they can be evaluated in explicit form (/5/, p.51). We shall seek the compatible
solutions of system (2.1) in the form = Wlfx, M= M (¢, 2). For the functions p, we obtain
the system of equations

Xopi = cho Hp Xvpe = Giv Wp (2.2)

To will show that it is compatible, we write the compatibility conditions for each pair
of equations X,py — c;‘,o pp =0, Xapx — c’éa yp = 0, and obtain by Jacobi's conditions

[X o Xp) i — CopXatp + ChaXpbp = (checlp + clachp + chicap) =10
and similar relations with the replacement ¢ — 0, f —v.
By successive integration of system (2.2) we can show that it has s linearly unconnected
solutions (u,, ..., @), k =1,. .., 5, which form a fundamental system (n,f =85 at a point
(te, z°) of general position), while the general solution of system (2.2) is a linear com-
bination of them with constant coefficients.

3. Evaluation of linear integrals. Wwe will show that, if the algebra A with basis
Xy, . 0 X, 3.1

is solvable (/6/, p.208), the linear integrals of motion can be evaluated by quadratures.
We are thus concerned with solvability in the quadratic Egs.(2.2).

Let (py's---» M) be s linearly independent solutions of system (2.2) (which do not
necessarily form a fundamental system). We change to a new system of functions pu,*?, given

by the relations pk*ﬁpﬁ’ = 6,", det | pg' | #= 0. These functions satisfy the equations
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Xoi® = clppi®s  XP=chm®, Bk, pj=1,.. .5 (3.2)
which are obtained from (2.2) by multiplication by the function ;LTB u}”‘ and addition. Systems
(3.2) and (2.2) are equivalent.

If the algebra (3.1) is solvable, then the (s + 1)-dimensional algebra obtained from
it by the addition of the vector X, is also solvable (it is clear from the commutation re-

lations [X,, Xj] = ¢xX, that algebra (3.1) forms an ideal (/6/, p.143). In a solvable
algebra we can find a new basis
X5 0 X0 Xon, = X, (3.3)

such that every system of operators X,°, ....X,°(i=1,...,s+ 1) corresponds to a normal
divisor of the local group with algebra (3.3) (/6/, p.212). Consequently, the commutation
relations will have the form

[Xke, onl':C};leo-i- C‘)‘k]’ch + ...+ C;'Z]'on, ](«',]= 1, R R 1

ice., ¢f = for k<p or j<p- In the basis (3.3), Egs.(3.2) become
Xowe' = cplprt, X,°p;2= 't - cm“p,;’, ces (3.4)
X == ol + ot + - oty k=1,...,5
j=1,...,s4+1

The system written can be integrated successively, starting with the first
pl=citexp eyt {afdop, mu =t B =Y, o = const (o5"5,")

After integration of the first i subsystem of (3.4) the (i 4 1) -th subsystem consists
of compatible equations of the type

0z/0x; = ajm + b; (3.5)

where a; b; are known functions of =z, ..., Zy;. This system is integrated by variation of the
arbitrary constant

z = C*zg, 24 = oxp (§ a;dz;)
C* = C + § bjzgtdz;, C = const

since it follows from the compatibility conditions of Egs.(3.53) that a,dz; and bz, dz; are
total differentials. :

The set of functions p,** thus obtained will depend on §* arbitrary constants ¢,
which will be chosen differently depending on the choice of the integral basis. We only
require that this basis no non-degenerate. For this it suffices e.g., that the constants e}
be subject to the condition that, at a fixed point at which no quadrature has a singularity,
we have p.,,"i = &% In some problems the conditions c," = §;i ensure the non-degeneracy of the

intregal basis (détl| p/**ll £ 0) and simultaneously simplify the working. Sometimes it is
simpler not to use the above procedure at all (it always gives an answer), but to evaluate
the p,’ directly from (2.2). 1In short, we have proved the following theorem.

Theorem. A mechanical system with s degrees of freedom and holonomic ideal non-stationary
couplings, whose kinetic energy in Chetayev variables is independent of the coordinates, has
just s linear first integrals when it moves in the absence of active forces. If the Lie
algebra used for passing to the Chetayev variables is solvable, these integrals can be found

explicitly by quadratures.
Note that, if the:algebra is commutative, we can find explicitly for autonomous systems
a coordinate transformation which converts all s linear into cyclic integrals.

4, On the conditions for reducing the kinetic energy of a scleronomous
system to a form independent of the coordinates. Let the Lagrangian and function
H* be

Lo=1a,; (t, 2) x;'x; + a; (¢, 2) ;" + aq (¢, 2) — U (2) (4.1)
H* =305 (8) gy + b, (B y; + by () + U (2)

Then,
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byy= a“ai"ajl, b= — (a¥ay + &) ot “4.2)
by= llzaklakal —Q
a?ay =285 o't =28"
For the proof, we calculate
Vollg — L*= l/ﬁa;} (Ef'k + a]) Eaia"]u - lliaij (Ejrnt + Ej) Ei>_ aiii —a+U

On replacing the terms on the right-hand side of this expression that contain 7, in
accordance with the relations

G G+ E) =Uos' — @, Eymy =" (g —a)) — &,
we obtain relations (4.2), and also
B = 1" (15" — ay) (! — ) — Mg — %0+ U
Clearly, H* cannot be obtained from the Hamilton function of the system
H=1a"(p,— o) (05— a) — a0+ U
by the replacement py = y;a%, 1f ZE30; in this sense H*is not the Hamiltonian of the system
when 2§+ 0.
We recall for convenience Maurer's relation (/6, p.l1l04/)
Bay¥/dx; — o [0, = clvory ! (4.3

Let the couplings imposed on the system be time-independent. Then, g; = a4 = 0, da,;;/0t = 0.
It can be assumed without loss of generality that b;; =6, and &, =0 (taking §, =0). The
first group of relations (4.2) gives

o {4.4)
Qiv = Gy Oy"

On writing the regult of differentiating relations (4.4) in the light of (4.3), and of
the relations Ej" = a%a;%, after introducing the Christoffel symbol of the second kind and
transforming the terms which contain'the structural constants, we find by replacement of the
indices that

o[z =Thed - culay'or,®,  cpe ="/ (el + B + chy) (4-9)
Db =1/,aPi (9a;;/0z¢ + dav;/dx; — dai/dx;)

The commutative case ¢;'=0. We will find the compatibility conditions for system (4.5).
For each pair of equations

doy')0z, =TifoyB, Bzy'/0rs = Tigfor®
we obtain
R = GT1x%/0g — 0T4g¥/0; + DloTin® — Theligh = 0

Using the Christoffel symbol of the first kind T,;;, we can express these conditions
in terms of the Riemann curvature tensor with dropped index

ar, . ar_ . .
Rpmico = —20 — —2 4 @B ([0l my — Tyl ) =0 (4.8)
c T
1 [ da, dar; O .
Fj,(r=-2—(dx': 6:7 — 01’;), Ti? = afT;, i
1

This is the well-known condition for isometry of the Riemann space with metric ds® =
adz;dzr; to Euclidean space. The number of algebraically independent components of the Riemann
tensor is s? (s — 1)/12. They have the symmetry properties

Rpmivwe = —Rimw = —Rmior = Reomir Rmive + Rmot + Rumasr = 0.

It can be shown that (4.4) are particular integrals of Eqgs.(4.5). This means that, if
conditions (4.6) hold, then the functions ak‘ can be evaluated by finding the general solution
of system (4.5), while the constants of this solution are found from conditions (4.4).

Example. Consider the inertial motion of an autonomous system with two degrees of
freedom. With s= 2, conditions (4.6) reduce to the single condition
Ryne = 0 (4.7)
The motion of the system can be expressed as the motion of a material particle over a
surface with the metric
ds? = a,,dz,® 4 2a),dz,dz, + a,dx,?
If condition (4.7) holds, the metric becomes Euclidean. The corresponding coordinate
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transformation is evaluated by quadratures. We also solve in quadratures the corresponding
mechanical problem, i.e., evaluate the trajectories (geodesics), the two linear integrals and
the general solution.

For instance, let the surface over which the particle moves be a smooth cone. The kinetic
energy of the particle in spherical coordinates o¢=u, a=a(r), R=z, is

T = 1, [x,? (@'? (1) + sin®a (7)) 2,2 + 2,72 (m=1)

Condition (4.7) is satisfies for any function «a(s) (it is assumed to be 21-periodic,
0 < ay < a<n/2), since the cone is a developable surface. The change of variables

) = S z2 (2 sin? a) cos Ydr, + sin Ydzy, P = 5 (a2 - sin®x) Yrday

' = S 2z (0’2 + sin? a) sin Pd.ry — cos Ppday

reduces the kinetic energy to the canonical form 7 =1, (z 2+ %'

All the quantities of the dynamic problem can also be evaluated by quadratures. In order,
to deal solely with explicit and elementary functions, we confine ourselves to the case of a
right circular cone (a = const). The equations of the trajectories are in this case

R =a(bsiny + ccosp)!, Y= ¢sina
The linear integrals and complete integral of the Hamilton-Jacobi equation are

R cosP + R siny/sin @ = ¢;, R¢ sinp — R cosYP/sin a = ¢, 1{4.8)
V=V ZkR sin (p — @y); &, ¢, = const

The non-commutative case. The compatibility conditions for system (4.5) can be written
at once:

Reeue,e, = Cp,pop,p 08,500,500, o02p, 5 (4.9)
T T W
Coptud, = CBiCBY + ChoCvR: — CobiChos (4.10)

(for correct tensor arrangement of the indices the super- and sub-scripts of the functions
aj must change places).
The constant tensor (pgpp, has the same symmetry properties as the Riemann tensor

Couterate™ — Crappye = — Cp.8:88.= Cpoiiper

> Coppp=0,
(B Far R0

which follow from (4.10).
As in the commutative case, relations (4.4) are integral manifolds of Egs.(4.5). With
s = 2, calculations give

Rig1e = Cr e e 0p g g ap? = — [(€1a")* + (612%)%] (2 0t9* — 0p'2y?)?

since (oy'a? — a,le,?)? = a5,8,, — 4, conditions (4.9) reduce to the single condition
Rz ==— [(€12")? + (€122)%] (@118 33 — 2157) 4.11)

which describes a surface of constant negative curvature. An example is the pseudosphere
(formed by rotation of a tractrix).

In short, the equations of motion of a mechanical system with two degrees of freedom,
the coefficients of whose kinetic energy satisfy condition (4.11), by the Theorem of Para.3,
admit of two linear integrals.

In problems with s> 3 coditions (4.9) introduce new (apart from relations (4.4)) finite
constraints on the functions af. This prevents us from obtaining useful expressions for the
compatibility conditions of system (4.5) in terms of a single tensor ga;; and its derivatives
(i.e., relations which do not contain unknown functions af) On the other hand, we are
sometimes able to find solutions of Eqs.(4.5) without integrating them.

Let us describe one such method. Using (4.9), we evaluate the components of the Ricci
tensor

L3088

& _ €, Eap¥ gY €20 84
R, = 0 Ry o0, = Crppp iR peon o0 = 260,70 %R0

$
hgee= D Copabra
fi=a

Hence, using the relations &= a'fa;f, t/ ax’ = &', we obtain akawmi==hwavh in the matrix
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form
B*q == oqh; R¥* = (avBRkB), o= (al\‘), b= (hy) (4.12)

It follows from the similarity of matrices R* and h that the eigenvalues of R*, and hence
the coefficients of its characteristic equation, must be constant. (In practice, these
necessary conditions have to be checked in the first place). 1In view of this, not more than
s+ 1)/2 —s=s(s— 1)/2 of Egs.(4.12) (in which R*and h are symmetric matrices) will be algebra-
ically independent. In the general position the number of independent equations cannot be
less than s(s— 1)/2, Together with the s(s+ 1)/2 Eqgs.(4.4) we obtain s equations for evaluating
the functions a;'. Substitution of the functions thus obtained into Egs.(4.5) gives the
necessary and sufficient conditions for our problem to be solvable.

5. Motion under the action of active forces. we now turn to the case when the
mechanical system is subject to the action of both conservative and non-conservative forces.
The latter will be assumed for simplicity to be independent of the velocities, i.e., they are
positional displacements. As before, the constraints are assumed to be holonomic and non-
stationary, and the kinetic energy, transformed to Chetayev variables, is assumed to be in-
dependent of the coordinates (see (1.9)). However, when forces are present, we need not
assume that the function b, appearing in the expression for H*in accordance with the second
of (4.1) is independent of the coordinates; it can be associated with the potential energy
U (z), and the forces corresponding to the sum &b+ U to belong to non-conservative forces.
Then, the forces obtained will be called reduced, and denoted by @,'. Obviously, Q. = Qu —
8 (by + U)/dz,. We assume that, after introducing a suitable algebra and forces Q'

H* =1,byy (8) yays + b: (8) (5.1)
s
The commutation relations for this case are (1.6) and (l1.7).
Relations (1.7) show that the necessary and sufficient conditions for the system of
operators X,*, Xi* to remain closed when reduced forces are present are
XxQ:' = —Qa’ﬁga"/axi
which can be given the equivalent form
XQ¢* = ciklol*v Qi* = EakQa'

Since it can be shown in the usual way that this system is compatible, it has solutions,
which can be evaluated in quadratures if the algebra A is solvable (see Para.3).

Let us find the conditions under which the forces @, admit of the force function
(possibly time-dependent)

Qo' = 8U'[82q, Qy*=Es U [0z0= XU’
By conditions (5.1),
XX U — chX U = (X; Xy — i X)U' = X, XU = X, Q* =0 (5.2)

Qff =c* (1), c*eh=0

Conditions (5.2) are in fact sufficient for the forces @, to admit of a force function.

Indeed, Q' = c*a,f. On multiplying Maurer's equations by ¢* and summing over I, we obtain

e Fa M depra)y  8Q,  0Qy

!
=c¢*c e’ =0

oz, (?Iu az,, a:u

HBence Qg = aU'/dxq, U’ = U’ (t, 2).
We define the functions .uk‘ (t, z) by (2.2): Xouk" = ,cpo"ppi,‘ X\,p,ki = cpv"ppi. We examine the
properties of the products € := n'Qx*. We have
Xt = XoQi* + Q¥ Xobtn' = i chiQ0* + Qu*ehutty' = (Ov + i) W 'Qu* =

Hence de'/dz; = 0, px'Qx* = ¢'(f). Thus the most general form of the Q.!, corresponding to
admissible forces, is given, apart from the arbitrariness of the functions & (), by the con-
straints imposed on the mechanical system

Q*= e () P*;'”’ H?l!lki =86

We shall seek the linear integrals of the mechanical system in the form ;" = p,'y; +
Lo’ (). On substituting these expressions into the equations X;*u,’ = 0,...,X,*w,/ =0,we get

Xp*o) =y, X' + pichiy,— (che + clp) hp'yy=0
By choosing the functions p, (f) we try to satisfy the equations X,*w;,” =0
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Xo*o =y, X ou, + 5 (oY + Q") -+ dpy’ (tydt =
(cho + Cho) Bp'0s + 1°Q,* + dpsy’ (1)/dt =€ (1) +- iy’ (1)/dt
Obviously, the equations will.be satisfied if we put

ot (8) = — Sei (t)dt
Thus the required linear integrals are
o =pi(t, Dy — (ef (O di=c,

Since p,,iy, = @; are the first integrals of the mechanical system when there are no
admissible forces, the imposition of the latter leads to evolution of these integrals ®; =
§et (t) dt + ¢

Notice that, if the basic algebra is commutative, conditions (5.2) are satisfied, and
the motion takes place in a field with a force function. In this case pf=pi@. 1 pf=
85/, then & = c¢*. The first integrals are

o =y; — Sci*dtr—ci (5.3)
and the force function is given by a quadrature
V=U=c* Sail dz, (5.4)

This may not be a unique function of the system coordinates. The problem of the motion
under the action of admissible forces then losses its mechanical meaning.

Example. In the problem of particle motion over the surface of a right circular cone

a,! = x4 cos P, o, = sinP/sin a, ! = z.8inP
a? = —cosV/sina, ;= @, 7= Rsina, Y = z;sina

Here we have the commutative case. Calculation from (5.4) gives
V = R [¢,* (t) sin (@ sin &) — ¢;* (¢) cos (¢ sin a)]

The force function V is unique only when « = n/2, when the particle moves over a plane
in a homogeneous field of force. When a=n/2 the forces acting on the particle lose their
mechanical nature, but the equations of motion, in accordance with (5.3), admit of linear
integrals corresponding to (4.8) with ¢, ¢, replaced by ¢ — ¢*dt, c; — Vep*dt.

6. Remark on the nature of the equations of motion. systems of hydrodynamic
type. If the Hamiltonian of the system can be reduced to the form (5.1), the equations of
motion c¢can be written in the form (@, are the reduced forces).

o = byl B+ &y (6.1)
vy = eliby ;4 (ehb, + b v, - 5,70, (6.2)

A typical feature of this description of the mechanical problem is that, with @Q;* = ¢;* (1),
the equations for the Chetayev variables y; are separate from the rest, and can therefore
have an independent origin. For instance, with b, = 6, by = ;7 = Q' = 0, Egs. (6.2) can be
written as

;= Ay Aug = elegi+efy)

It can be verified that A = Ay, Aux + Ay + Ay = 0. If the extra conditions ¢yl = 0(4u; =
0), are imposed on the structural constants, we arrive at a system of hydrodynamic type /7/.

In cases when Egs. (6.2) describe a separate problem, Egs.(6.l) become auxiliary. The
components of the operators X, Xx. in them can be chosen arbitrarily provided that the
structural constants are chosen in accordance with the specific problem. If the Q;* = £ 0/
are then admissible quantities, and Egs.(6.1l) (noting that there are s linear integrals in
the present case) are integrable, the problem can be completely solved.

In other cases, conversely, Egs.(6.2) may be found to be integrable when admissible
forces are present. Then, if the linear integrals can be solved with respect to the coordi-
nates z,,we obtain a complete solution of the mechanical problem described by system (6.1),
(6.2).
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The author thanks V.V. Rumyantsev and A.S. Sumbatov for useful discussions.
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A CONSEQUENCE OF THE INVARIANCE OF THE GAUSS PRINCIPLE"

V.A. VUJICIC

The invariant form of the Gauss principle of least compulsion in the
space of positions of a system with constraints (some of which may be
non-holonomic) is considered. A modified construction of the compulsion
function in configuration space is proposed. The modified expression
contains information on the constraints. From the complete system of
differential equations, equations are obtained for finding the reactions
of the constraints. An example of the use of this approach is given.

Manay authors, see /1, 2/, have considered the analytic form of the Gauss principle.
However, there is still no standard treatment of the principle in analytical dynamics. For
instance, it is said in /3/, p.192, that "the Gauss principle ... does not have the analytical
advantages of other principles", and "is of less value than the principle at least action
(/3/, p-134). oOther authors (/4/, p.219) say that the "Gibbs-Appell equations (with which
the Gauss principle is closely linked) represent the simplest and at the same time the most
general form of the equations of motion". Yet, though these equations are closely linked with
the principle of least compulsion, they do not contain the compulsion function

1 . XV\Z ?>
zz—z—va (.z — ] (0.1)

m /

but the Gibbs-Appell function

1
S Dime ©2)
v

where m, is the mass of the v -th point of the system, gz, are the coordinates of the acceler-
ation vector, and X, are the coordinate of the vector of forces in a rectangular orthogonal
system of coordinates.
Apart from these inconsistencies, there are difficulties in introducing the generalized
Lagrange coordinates, in which
=85 —Qu™ (0.3)
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