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can be performed with respect to its elements. We then have to satisfy the condition that B 
must be positive definite. A more sensible method is to use our above method of constructing 
the extremal sets of stability and write a problem of type (4.4) /3/. 

To solve problem (4.4) we used iterative algorithms of type (3.5), taking the case when 
the maxima with respect to t,zO,a are not unique. When solving this class of problems we 
found a high rate of convergence of the iterative processes to the point $0 . The modes 
obtained were mainly analysed for optimality from the physical stand-point. It must be said 
that the optimal design of acceleration and focussing systems byourmethod enables the ef- 
ficiency of such devices to be greatly improved /3/. 

The author thanks V.V. Rumyantsev, B.N/ Bublik, and N.F. Karichenko for useful discussions 
and comments. 

REFERENCES 

1. CHETAYEV N.G., Stability of motion. Papers on analytical mechanics, Izd-vo Akad. Nauk 
SSSR, Moscow, 1962. 

2. RUMYANTSEV V.V., The method of Lyapunov functions in the thoery of stability of motion. 
Fifty years of mechanics in the USSR, Moscow, Nauka, 1968. 

3. BUBLIK B.N., GARASHCHENKO F.G. and KIRICHENKO N.F., Structural parametric optimization and 
stability of beam dynamics, Nauk. Dumka, Kiev, 1985. 

4. KIRICHENKO N.F., Introduction to the theory of the stabilization of motion, Vishcha 
Shkola, Kiev, 1978. 

5:GARASHCHENKO F.G. and KIRICHENKO N.F., Study of problems on the practical stability and 
stabilization of motion, Izv. Akad. Nauk SSSR, MTT, 6, 1975. 

6. OVSYANNIKOV.D.A.,Mathematical methods of beam control, Isd-vo LGU, Leningrad, 1980. 
7. KANCHINSKII I.M.,, Particle dynamics in linear resonant accelerations, Atomisdat, MOSCOW, 

1986. 
8. MURIN B.P., BONDAREV B.I., KUSHIN V.V. and FEDOROV A.P., Linear ion accelerators, 1, 

Atomizdat, Moscow, 1978. 
9. VASIL'YEVV.P., Lectures on methods of solying extremal problems, Izd-vo MGU, Moscow, 1974. 
10. DEM'YANOV V.F. and MALOZEMOV V.N., Introduction to min-max, Nauka, Moscow, 1972. 
11. FEDORENKO R.P., Approximate solution of optimal control problems, Nauka, Moscow, 1978. 

Translated by D.E.B. 

PMM U.S.S.R.,Vol.51,No.5,pp.564-573,1987 
Printed in Great Britain 

0021-8928/87 $lO.OO+O.OO 
01989 Pergamon Press plc 

ON A REMARK OF POINCARE* 

L.M. MARKHASHOV 

Descriptions of non-autonomcus mechanical systems by Poincari's equations 
/l/ in the Lagrangian and canonical forms are studied. For systems with 
a Hamiltonian which depends only on the Chetayev variables /2/ and time, 
the existence of a complete setoflinear (non-commuting) first integrals 
is proved. The required conditions imposed on the kinetic energy and 
active*forces are studied. Explicit relations for evaluating the integrals 
by quadratures are obtained. The connection of PoincarG's equations with 
system of hydrodynamic type is noted. The case of the motion of autonomous 
mechanical systems when the Lagrange function, expressed in velocity 
parameters, is independent of the coordinates, was mentioned by Poincar; 
as being of special interest. This case includes the theory of geodesic 
left-invariant metrics in Lie groups (a "generalized rigid body" /3/j. 
The primary element of its construction is a Lie group (configuration 
manifold). Every metric which is defined in it and is invariant under 
the group operations, defines the kinetic energy. In studies not directly 
connected with Poincar&'s remark, the initial object is the mechanical 

l Prikl.M.atem.Xekhan.,51,5,724-734,1987 
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system (the kinetic energy and active forces). Therein lies the difference 
between the statements of the problems and the results obtained. 

1. Initial relations. Let us summarize the facts used below, which we stated and 
proved in our paper "Some properties and applications of the Poincare-Chetayev equations*. 
(*Preprint273, Inst. ProblemMechaniki, Akad. NaukSSSR,Moscow,1968). Throughout, the 
indices take the values 

i, j, 1, k, p = 1, . . ., n; a, fl = 1, . . ., N; Y = 1, . . . , N _ S 

Summation over repeated indices is understood. 
Let rG be the coordinates of the mechanical system with s degrees of freedom, constrained 

by N--s ideal holonomic non-stationary couplings fv(x,t)= 0, the explicit form of which 
is not necessarily known. We assume that the possible displacements and actual velocities of 
the system can be written as 

6x= = &j (x, t) 91, xaa' = Em' (5, t) 11 + 5.~ (x, t); N, n > 

s = rank11 EaiII 

where the parameters Q, of the possible displacements and the Poincare parameters qr are 
independent. It is assumed that the corresponding operators 

x0 = alat + B (I, t) alaxa, x, = Ed (x, t) a/ax= 

of which just S+ 1 are linearly independent, form a basis of the (n + i)-dimensional Lie 
algebra (algebra A) 

[X,, x,1 = CLX,, [X,, x,1==c~o:ox, 

Let L(t,x,x') be the Lagrange function of the system and L* (t, X,11) ZL (t*G El’ W-k by .. .y 
I,& + EN); Qn be the non-conservative forces acting on the system. The equations of motion 

X1'= X, + (cb + c&jl) $- 
P 

contain N-s 
coJp = 0, Qa = 0, 
0, QCL = 0 they 
/2/. 

xcca’ = E$ (x, 4 qj + Ea (J, t) (1.2) 

redundant coordinates x and n-s redundant parameters H. With N = n = s, 
a&j/at = 0, & = 0 they become Poincare's equations. With N >s, n = s, cop = 
become the Poincari-Chetayev equations for the case of non-stationary couplings 

We note some properties of Eqs.(l.l). 
lo. Of the n equations (l.l), only s are independent. The rest are linear combinations 

of the independent equations. Hence, if the latter correspond to the parameters flr,...,)l,, 
then the parameters %+1, . . .I tin are free, i.e., they are not connected by any auxiliary 
conditions. 

2O. The operators X1' form a basis of an algebra isomorphic to algebra A: IX,‘, X,‘l = 
CfkPXP’. 

3O. We can obtain Eqs.(l.l) from the known Lagrange equations by a passage to the quasi- 
veiocities in accordance with (1.2). 

We pass in Eqs.(l.l) and (1.2) with n = s to Chetayev variables y, = aL+/8qi. In 
mechanical problems the Lagrange function L* fs non-degeneratequadratic formofthevariables 

911 . . .t q*. By the property of the Legendre transformation (Donkin's theorem /4/) there is an 
inverse transformation 1, = aHClay,, generated by the function H* = 7hgi -C*. The equations 
of motion take the canonical form 

(1.3) 

y,- = - ( tj e + cjrPyp F) + coj%p + tjQa 
c4 

Chetayev (/Z/,p.l99)wasthefirst to obtain Eqs.(l.3) in the redundant ooordinates with 
non-stationary couplings under the assumption that there are no non-conservative forces 
(Q== 0) and that the operator X,permutes with the operators X1, . . . . X. (GJ~ = 0). If n =(I 
and X0 = 0; Eqs.(l.l) can be obtained directly from Hamilton's equations 

5“ = atrIapi, pi’ = -aHlaxl + Q, 

by replacing the momenta yr = EI”pI. 
we can write ~qs.(l.3) in the form 
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xa’= Y,*H* + E,, Y; = - X,*H* + copyp + EajQa (1.4) 
Y a* = Eczi (x3 t) + t I’X 

a a 

1 
xj* = Ea ( I 0 x + CjlpYp ayI 

BY the operator of shift along the trajectories of motion of the system Zi' = fi(Zi, t) 
we henceforth mean the operator of total time differentiation in the light of the equations 
of motion of functions which are given in the space {z, t},S = a/at i- fi(z,t)a/az,, or theoperator 
acting on functions which are defined in the phase space {z}, S = ft (z) a/az,. 

We consider a mechanical system with ideal holonomic non-stationary couplings, whose 
motion is described by Eqs.Cl.4). The shift operator of this system is 

S = G + (Ya*H* + ECZ) & + (- Xj*H* + CJY, + &jQa) G 

We will list some of its properties. 
lo. The operator S can be written as 

s=x,*_~Y,“+ $pxj* 
a 1 

X0* = X, + i C,j’Yp + L’Qa) a aYj 

(1.5) 

Thus S belongs to the linear hull stretched on operators x,*, y=*, xj*. 
2O. The system of operators XO*,Ya*, X,* is closed. When there are no non-conservative 

forces (Qa = 0) its multiplication table is given by the commutation relations 

1x,*, xk*l- cpkx,*, [Ya*, Yp*] = 0 

[Xj*,,Xa*l = -$- Yfi *, [x0*, 
as,, 

a.*1 = 7 E’,* 

1x,*, xh*l= cgx,* 
30 . If the forces Qa#O and are independent of the variables y, the last set of 

relations in Para. will be replaced by 

[x0*, xk*] = &X,* - ! XkQ< -t -$ Qa') YB* 

Qs' = QB - a (b, + uYaxb. 

(1.6) 

(1.7) 

where @o-l- u) are the terms of H*,, independent of y. 
4O. The left-hand sides of the coupling equations belong to the kernel K of theoperators 

X0*, Ya+, Xj*, i.e., 
X,*fv = Ya*fv = Xj*fv = 0 

50. Let sa+1, * . -9 5s be the coordinates of the conservative system such that we have 

aH*iax,+, = . . . = awax, = 0, a~ylaxo,,, = . . . 
. . . = aE,lax, = 0 

afqiiaxo,, = . . . = aE,jiax, = 0; Y = I, . . ., (3 

The rank of the matrix 11 EliI\, from which the block 

E+, . . Ek, I r El’ : : : i, 
is removed, is equal to or and 

=U 

Then, in accordance with (1.5) and (1.6), the kernel K consists of functions fq and of a 
further s-u functions wW 
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Yy*o,=Xj*cop=Xo*CO~=O; ?=I,..., 0; j=l,..., s; (1.8) 
p=l,...,S--U 

These are the functionally independent first integrals of the mechanical system. If, 
in the Lagrangian form, the latter has the cyclic coordinates x0+,, . . -1 ~~+,,,(m<s - (I), which, 

on passage to the canonical form , are included in the Chetayev coordinates .Go+l, . . .I x,, then 
all the corresponding cyclic integrals are contained among the functions o,,. 

Notes. lo. Here and henceforth, by a first integral of motion op, we shall mean a 
solution of the equation So= 0. The uniqueness of this solution and the degree to which this 
definition corresponds to modern geometrical ideas on first integrals will not be discussed. 

2O . The condition on the rank of the matrix ]l~j]] is satisfied automatically and in 
an obvious way in two cases: with N= s and when El. . ., z. are the Lagrangian coordinates, 
and x0+,. . ., xx are parametrized by the remaining 8 - 0 Lagrangian coordinates of the system. 

A special case, noted by Poincari, corresponds to the following situation which is 
further considered in Paras.2-4. The mechanical system with ideal holonomic non-stationary 
couplings and with s degrees of freedom , moves in the absence of active forces (U = 0, Qcl = 
0). We will assume that, by introducing a suitable algebra, we can remove all the coordinates 
from the function H*:H* = H* (t, y). Then the shift operator S is an element of the linear hull, 
stretched over the basis system of operators x0*,x1*, . . ., x,* of the (s + 1) -dimensional 
Lie algebra 

s=x,* + F x,*, [xj*,_&*]=c~~Xp*, [X,*,Xk*l=cz&* 
1 

This follows from (1.5) and (1.6). Putting 

H* = 'l&;j (t) yiyj + bi (t) Y, + b, (t) 
in Eqs.(1.4) we obtain with N = s 

(W 

Xa’ = Eaibijyj + Eaibi + t, 

Yj’ = cl,‘bliypyi + (~01’ + c,‘bI) Yp 

{1.10) 

2. On the existence and evaluation of the first integrals. By (1.8), the 
systemofequations 

x,*0=x,*0 = . . . = x,*w =o (2.1) 

is compatible and its solutions are the first integrals of the equations of motion (1.10). 
The closed system of operators x0*, x1*, . * ., x,* acts in (2s+ 1)-dimensional space {t,x,y}, 
and hence has precisely 2s + 1 - (s-k 1) = s independent solutions. Let us show that they 
are all linear in the variables Yj. The integrals that depend only on yj are non-linear. 
For s=3 they can be evaluated in explicit form (/5/, p.51). We shall seek the compatible 
solutions of system (2.1) in the form 0 = PLkyb, pk= pk (h X). For the functions pk we obtain 
the system of equations 

(2.2) 

To will show that it is compatible, we write the compatibility conditions for each pair 

of equations x&.- & pp = 0, &+k - & fLp = 0, and obtain by Jacobi's conditions 

[X,,&]pk - &&Zl"p + c;~X~~p=(c~&~ + &,k, + cf;lc:,)~l=o ’ 
and similar relations with the replacement a-+0, fi+v. L 

By successive integration of system (2.2) we can show that it has s linearly unconnected 
solutions (p,(k), . . ., p*(k)), k = 1,...,s, which form a fundamental system (~1' = hjk at a point 
&,x0) of general position), while the general solution of system (2.2) is a linear com- 

bination of them with constant coefficients. 

3. Evaluation of linear integrals. We will show that, if the algebra A with basis 

x,, . . .,x, (3.1) 

is solvable (/6/, p.2081, the linear integrals of motion can be evaluated by quadratures. 
We are thus concerned with solvability in the quadratic Fqs.(2.2). 

Let (PI*, . . .,P,') be s linearly independent solutions of system (2.2) (which do not 
necessarily form a fundamental system). We change to a new system of functions )&*', given 

by the relations pk*"pS ’ = IS,‘, det]] PB']] #O. These functions satisfy the equations 
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which are obtained from (2.2) by multiplication by the function $R PT" and addition. Systems 
(3.2) and (2.2) are equivalent. 

If the algebra (3.1) is solvable, then the (s + *)-dimensional algebra obtained from 
it by the addition of the vector X,is also solvable (it is clear from the commutation re- 

lations [X0,, X,1 = &X, that algebra (3.1) forms an ideal (/6/, p.143). In a solvable 
algebra we can find a new basis 

xiO, . . ., X.“, xi+,, = x0 (3.3) 

such that every system of operators x10, . . ., XI” (i = 1, . . .( s+ 1) corresponds to a normal 
divisor of the local group with algebra (3.3) (/6/, p.212). Consequently, the commutation 
relations will have the form 

[Xc, XF]=CLjX," + CijXsO + . . . + c{jXj’, k, j= 1,. a .( s + 1 

i.e., cJ’=O for k<p or j<p. In the basis (3.3), Eqs.(3.2) become 

(3.4) 

The system written can be integrated successively, starting with the first 

After integration of the first i subsystem of (3.4) the (i + I)-th subsystem consists 
of compatible equations of the type 

adax, = a,.2 + b, (3.5) 

where al, bj are known functions of x1, . . ., z~+~. This system is integrated by variation of the 
arbitrary constant 

z = Pz,, z. = exp (S a&i) 

C* = C + 1 bjz;ldxj, C = const 

since it follows from the compatibility conditions of Eqs.(3.5) that ajdrj, and bpo-ld.zj are 
total differentials. 

I 

The set of functions pk*' thus obtained will depend on Sa arbitrary constants cji, 
which will be chosen differently depending on the choice of the integral basis. We only 
require that this basis no non-degenerate. For this it suffices e.g., that the constants Cj 
be subject to the condition that, at a fixed point at which no quadrature has a singularity, 
we have ekes= 6,'. In some problems the conditions cji = 6,i ensure the non-degeneracy of the 

intregal basis (det II pj*‘Ii Z: 0) and simultaneously simplify the working. Sometimes it is 
simpler not to use the above procedure at all (it always gives an answer), but to evaluate 
the p(ki directly from (2.2). In short, we have proved the following theorem. 

Theorem. A mechanical system with s degrees of freedom and holonomic ideal non-stationary 
couplings, whose kinetic energy in Chetayev variables is independent of the coordinates, has 
just s linear first integrals when it moves in the absence of active forces. If the Lie 
algebra used for passing to the Chetayev variables is solvable, these integrals can be found 
explicitly by quadratures. 

Note that, ifthe!algebra is commutative, we can find explicitly for autonomous systems 
a coordinate transformation which converts all s linear into cyclic integrals. 

4. On the conditions for reducing the kinetic energy of a scleronomous 
system to a form independent of the coordinates. Let the Lagrangian and function 
H* be 

L = 'l&j (t, 2) xi-x; + ai (t, I) 31' + a, (t, r) - U (5) 

H* = 'lzbij (t) dint + b, (t) yi + b, (t) + u (x) 

(4.1) 

Then, 



bi, = akraiku;, bi = - (ak’ar + El) cc*’ 

b, = ‘/$aklakal - a, 

aklali = a,“‘, ai’f; = Sik 

569 

(4.2) 

For the proof, we calculate 

yO?jO - L* ='/@,(4j'Q+ 5,)f*'l]~-'/pail(f;~+ ej) %-‘&i--+ ’ 

&I replacing the terms on the right-hand side of this expression that contain no in 
accordance with the relations 

=kj (Ej?, +  5,) = Y&Tk - =k’ Ek’lll = nkl (vp,’ - al) - 4, 

we obtain relations (4.21, and also 

H* = 'ina" (~,a,” - ak) (~<a,’ -. a,) - a,kEkyo - (10 + U 

Clearly, H* cannot be obtained from the Hamilton function of the system 

kl 
fJ = ‘ha (Pk -al,) (P, - q - a0 + u 

by the replaCeIUent pk = YiCQ’, if Z&a + 0; in this senseH*is not the Hamiltonian of the system 
when Z&"#Oo 

We recall for convenience Maurer's relation (/6, p.104/) 

aa,z/laxi - ac+jjaxT= c~flprayj (4.3) 

bet the couplings imposed on the system be time-independent. Then, ai = a, = 0, cYa,j/cYt = 0. 
It can be assumed without loss of generality that bij = 6; and bi = 0 (taking & = 0). The 
first group of relations (4.2) gives 

ai, = ayiayr (8.4) 

CI-I writing the result of differentiating relations (4.4) in the light of (4.31, and of 
the relations Elk = aajaka, after introducing the Christoffel symbol of the second kind and 
transforming the terms which contain'the structural constants, we find by replacement of the 
indices that 

aaki/b = &tkP f c$$~‘+,‘, c;k = ‘i2 (C& + Cyk i c&) (4.5) 

rir’ = llea*j (aaij/ax, + aa,j/axI - aa,,/ax,) 

The commutative case elk'= 0. We will find the compatibility conditions for system (4.5). 
For each pair of equations 

aaki/aXz = rirPakRI azki]aXb = r&d$ 

we obtain 

Using the Christoffel symbol of the first kind r,,irr we can express these conditions 
in terms of the Riemann curvature tensor with dropped index 

)=O (4.6) 

This is the well-known condition for isometry of the Riemann space with metric ds= = 

at&d+ to Euclidean space. Thenumberof algebraically independent components of the Riemann 
tensor is Sa(9 - 1)/12. They have the symmetry properties 

R FFL~TU = -Rimro = --Rmiar = R~amir Rmrra + Rmrot + Rmoir = 0. 
It can be shown that (4.4) are particular integrals of Eqs.(4.5). This means that, if 

conditions (4.6) hold, then the functions ski can be evaluated by finding the general solution 
of system (4.5), while the constants of this solution are found from conditions (4.4). 

Example . Consider the inertial motion of an autonomous system with two degrees of 
freedom. With S= 2, conditions (4.6) reduce to the single condition 

R ,*I* = 0 (4.7) 

The motion of the system can be expressed as the motion of a material particle over a 
surface with the metric 

ds8 = a&,* + 2nlPdz,d.z, +  a,.&’ 

If condition (4.7) holds, the metric becomes Euclidean. The corresponding coordinate 
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transformation is evaluated by quadratures. We also solve in quadratures the corresponding 
mechanical problem, i.e., evaluate the trajectories (geodesics), the two linear integrals and 
the general solution. 

For instance, let the surface over which the particle moves be a smooth cone. The kinetic 
energy of the particle in spherical coordinates cp E z,, a = a (z,). R = .z2 is 

T = 'i, lz.2 (a'" (zl) + sin% (z~)) xl'2 + zz'*l (m = 1) 

Condition (4.7) is satisfies for any function a(~,) (it is assumed to be 2.2-periodic, 
O<a,<a<ni2), since the cone is a developable surface. The change of variables 

z,' = 
s 
~(a'~+ sin*a),,? $dq + Gu Qdzp, 9p 1 * (cG i_ si$x) I’? drl 

s 

21’ = 
s 

JS (a’* + siGa) sin $dr, - cos $dr~ 

reduces the kinetic energy to the canonical form T = 'la (-z~"~ + z,"'). 
All the quantities of the dynamic problem can also be evaluated by quadratures. In order, 

to deal solely with explicit and elementary functions, we confine ourselves to the case of a 
right circular cone (a = conat). The equations of the trajectories are in this case 

R=o(bsin\p+ccoslp)-*, g=cpsina 

The linear integrals and complete integral of the Hamilton-Jacobi equation are 

R~I’ cos Q + R’ sin $/sin a = cl, Rq’ sin $ - R’ cos $/sin a = ca (4.8) 

V = 1/2hR sin (rp - ‘po); h, ‘p,, = const 

The non-commutative case. The compatibility conditions for system (4.5) can be written 
at once: 

&,,, = C~R~B.P.aB,elap.e'ccp.eJaR,E~ (4.9) 

c R,R*&R, = c;.ys.c;!$ + &c;$ - c&c;+ (4.10) 

(for correct tensor arrangement of the indices the super- and sub-scripts of the functions 
a/ must change places). 

The constant tensor CB,azeBB, has the same synmietry properties as the Riemann tensor 

which follow from (4.10). 
As in the c,ommutative 

s-2, calculations give 

R 1*12= 

case, relations (4.4) are integral manifolds of Eqs.(4.5). With 

Since (allazz - a21a12)2 = allat -am', conditions (4.9) reduce to the single condition 

R ,212 = - l(h'T + (claW (w,, - a13') (4.11) 

which describes a surface of constant negative curvature. An example is the pseudosphere 
(formed by rotation of a tractrix). 

In short, the equations of motion of a mechanical system with two degrees of freedom, 
the coefficients of whose kinetic energy satisfy condition (4.11), by the Theorem of Para.3, 
admit of two linear integrals. 

In problems with s>3 coditions (4.9) introduce new (apart from relations (4.4)) finite 
constraints on the functions a(. This prevents us from obtaining useful expressions for the 
compatibility conditions of system (4.5) in terms of a single tensor ai1 and its derivatives 
(i.e., relations which do not contain unknown functions cc;). Cm the other hand, we are 
sometimes able to find solutions of Eqs.(4.5) without integrating them. 

Let us describe one such method. Using (4.9), we evaluate the components of the Ricci 
tensor 

Hence, using the relations &' = aih'ali, kji%' = 6ki, we obtain aiYRx,cLi= h ci k VI Y 1 in the matrix 
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form 
R*a =Y ah; R* = (avPR,.& a = (a,‘), h = (h,,) ,(4.12) 

It follows from the similarity of matrices R * and h that the eigenvalues of R*, and hence 
the coefficients of its characteristic equation, must be constant. (In practice, these 
necessary conditions have to be checked in the first place). In view of this, not more than 
S(S+ 1)/Z-S= S(S- 1)/Z of ~qs.(4.12) (in which R'and h are symmetric matrices) will be algebra- 
ically independent. In the general position the number of independent equations cannot be 
less than s (S - 1)/z. Together with the s (S + i)/2 Eqs.(4.4) we obtain Sa equations for evaluating 
the functions a~'. Substitution of the functions thus obtained into Eqs.(4.5) gives the 
necessary and sufficient conditions for our problem to be solvable. 

5. Motion under the action of active forces. We now turn to the case when the 
mechanical system is subject to the action of both conservative and non-conservative forces. 
The latter will be assumed for simplicity to be independent of the velocities, i.e., they are 
positional displacements. As before, the constraints are assumed to be holonomic and non- 
stationary, and the kinetic energy, transformed to Chetayev variables, is assumed to be in- 
dependent of the coordinates (see (1.9)). However, when forces are present, we need not 
assume that the function b, appearing in the expression for Hfin accordance with the second 
of (4.1) is independent of the coordinates; it can be associated with the potential energy 
U(x), and the forces corresponding to the sum b + U to belong to non-conservative forces. 
Then, the forces obtained will be called reduced, and denoted by Qa'. Obviously, Qa' = Qa - 
B (b, + U)lax~. We assume that, after introducing a suitable algebra and forces Qa' 

H* = 'l&j (t) Y~YJ + bi 0) yi (5.1) 

The commutation relations for his case are (1.6) and (1.7). 
Relations (1.7) show that the necessary and sufficient conditions for the system of 

operators X0*, XK* to remain closed when reduced forces are present are 

XkQi' = -Qa'&'Vaxi 

which can be given the equivalent form 

X~QE* = CIB'QP, Qh* = EakQa' 

Since it can be shown in the usual way that this system is compatible, it has solutions, 
which can be evaluated in quadrature6 if the algebra A is solvable (see Para.3). 

Let us find the conditions under which the forces Qa' admit of the force function 
(possibly time-dependent) 

Q; = au’pXm, &* = &‘au’jaX, = xku’ 
By conditions (5.1), 

XjXku’ - c:kXlu’ = (XjX, - c:KX,) U’ = XxXjV’ = XbQj* = 0 (5.2) 

Q,* = c,*(t), cj*& =0 

Conditions (5.2) are in fact sufficient for the forces Qa' to admit of a force function. 
Indeed, Qk’ = cl*alk. On multiplying Maurer's equations by cl* and summing over 1, weobtain 

Hence Qa' = auf/ax,, u’ = ul (t, x). 
We define the functions ,~LI-~ (t,,x) by (2.2): XOuki = cpokppi, X,yk' = cpVk~pi. We examine the 

properties of the products E' := pk'Qk*. We have 

X,E'~~,'X,Q~* + Qk*X,~~i=~~i~tliQL* + Qk*&ppi= (ct, + c;,)pkiQl* =O 

Hence de"/azj = 0, pki&* = Ei (t). Thus the most general form of the Q& correspondingto 
admissible forces, is given, apart from the arbitrariness of the functions a (99 by the con- 
straints imposed on the mechanical system 

Ql* zzzz ,< (t) $‘, $‘pki = 6,’ 

We shall seek the linear integrals of the mechanical system in the form Oi' = Pt'Y, + 
pa’(t). 011 substituting these expressions into the equations xl*wl' = 0, . . ., X,* Wi' = 0,we get 

X~*O; = yjxkpj” + pjiCfjYp= (Cbk + CUP) I*p'Y,' 0 

BY choosing the functions pi(t) we try to satisfy the equations XO*oi' = 0 
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x,*wi’r=-YiXQ~ji + /Aji (Cgj"yp + Qj*) + dpoi (t),/dt zz 

(‘$I + C&)P~Yj + PlQj* + djA,‘(a?)/dt -Ei(t) + dpB'(t)/dt 
abviously, the equations will,be satisfied if we put 

psi (t) = - s Ei (t) at 

Thus the required linear integrals are 

Since pjiyj = wi are the first integrals of the mechanical system when there are no 
admissible forces, the imposition ofthelatter leads to evolution of these integrals o* = 
J.&i (t) dt + c*. 

Notice that, if the basic algebra is commutative , conditions (5.2) are satisfied, and 
the motion takes place in a field with a force function. In this case p; = p; (t). If p; = 
S:, then ~j = cl*. The first integrals are 

and the force function is given by a quadrature 

V s U’ = c,* \ aj' dxl . (5.4) 

This may not be a unique function of the system coordinates. The problem of the motion 
under the action of admissible forces then losses its mechanical meaning. 

Example. In the problem of particle motion overthe surface of a right circular cone 

al1 = sp cOs*. alp = sinlpisin a, czpl = z,sinrp 

a;” = --cOs $/sin a, z1 = ‘p, zI = R sin a, I# = q sin a 

Here we have the commutative case. Calculation from (5.4) gives 

v = R [cl* (t) sin (cp sin a) - c,* (t) co.9 (cp sin a)] 

The force function V is unique only when CZ= 1112, when the particle moves over a plane 
in a homogeneous field of force. When a#~~/2 the forces acting on the particle lose their 
mechanical nature, but the equations of motion, in accordance with (5.3), admit of linear 
integrals corresponding to (4.8) with cl, C, replaced by e1 - \cl*&, Ed - \ c,*dt. 

6. Remark on the nature of the equations of motion. systems of hydrodynamic 

type. If the Hamiltonian of the system can be reduced to the form (5-l), the equations of 
motion can be written in the form (Ql'are the reduced forces). 

=a ’ = bijSaiY, + Eaib, + 4, (6.1) 

Yl’ = ‘Tj’lzYpYi + (":jbl + gj, Yp f C,jQ,’ (6.4 

A typical feature of this description of the mechanical problem is that, with Qj'= c,*(t), 
the equations for the Chetayev variables yj are separate from the rest, and can therefore 
have an independent origin. For instance, with bri= &if, bl= cOl~ = Ql’ = 0, Fqs. (6.2) can be 
written as 

Yj' = AllkYIYk’ Ailk - ~ ‘/2 (Cki + c;J 

It can be verified that Ailh.= A,~;~,Azlh-+~I~i+~h.il = 0. If the extra conditions cil’= 0(.4;1l= 
0). are imposed on the structural constants, we arrive at a system of hydrodynamic type /J/. 

In cases when Eqs.(6.2) describe a separate problem, Eqs.(C.l) become auxiliary. The 
components of the operators X,,Xk. in them can be chosen arbitrarily provided that the 
structural constants are chosen in accordance with the specific problim. If the Qj* = E1'Ql' 
are then admissible quantities , and Eqs.(6.1) (noting that there are s linear integrals in 
the present case) are integrable , the problem can be completely solved. 

In other cases, conversely , Eqs.(6.2) may be found to be integrable when admissible 
forces are present. Then, if the linear integrals can be solved with respect to the coordi- 
nates ~,,we obtain a complete solution of the mechanical problem described by system (6.1), 
(6.2). 
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OF THE INVARIANCE OF THE GAUSS PRINCIPLE* 

V.A. WJICIC 

Manay 

The invariant form of the Gauss principle of least compulsion in the 
space of positions of a system with constraints (some of which may be 
non-holonomic) is considered. A modified construction of the compulsion 
function in configuration space is proposed. The modified expression 
contains information on the constraints. From the complete system of 
differential equations, equations are obtained for finding the reactions 
of the constraints. An example of the use of this approach is given. 

authors, see /l, 2/, have considered the analytic form of the Gauss principle. 
However, there is still no standard treatment of the principle in analytical dynamics. For 
instance, it is said in /3/, p.192, that "the Gauss principle .._ does not have the analytical 
advantages of other principles", and "is of less value than the principle at least action 
t/3/, p-134). Other authors c/4/, p.219) say that the "Gibbs-Appell equations (with which 
the Gauss principle is closely linked) represent the simplest and at the same time the most 
general form of the equations of motion". Yet, though these equations are closely linked with 
the principle of least compulsion, they do not contain the compulsion function 

but the Gibbs-Appell function 

r 
(0.1) 

(0.2) 

where m,is the mass of the v -th point of the system, xv" are the coordinates of the acceler- 
ation vector, and X., are the coordinate of the vector of forces in a rectangular orthogonal 
system of coordinates. 

Apart from these inconsistencies, there are difficulties in introducing the generalized 
Lagrange coordinates, in which 

z = S - Qaq"a (0.3) 
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